v1-standard/image-to-video
Model Overview
A model transforms static images into dynamic video clips.
Setup your API Key
If you don’t have an API key for the AI/ML API yet, feel free to use our Quickstart guide.
How to Make a Call
API Schemas
Create a video generation task and send it to the server
The ratio
and aspect_ratio
parameters are deprecated. The aspect ratio of the generated video is solely determined by the aspect ratio of the input reference image.
URL of the image to be used as the last frame of the video.
URL of the image for Static Brush Application Area (Mask image created by users using the motion brush).
A direct link to an online image or a Base64-encoded local image that will serve as the visual base or the first frame for the video.
The text description of the scene, subject, or action to generate in the video.
The length of the output video in seconds.
The description of elements to avoid in the generated video.
The CFG (Classifier Free Guidance) scale is a measure of how close you want the model to stick to your prompt.
POST /v2/generate/video/kling/generation HTTP/1.1
Host: api.aimlapi.com
Authorization: Bearer <YOUR_AIMLAPI_KEY>
Content-Type: application/json
Accept: */*
Content-Length: 315
{
"model": "kling-video/v1/standard/image-to-video",
"tail_image_url": "https://example.com",
"static_mask_url": "https://example.com",
"dynamic_masks": [
{
"mask_url": "https://example.com",
"trajectories": [
{
"x": 1,
"y": 1
}
]
}
],
"image_url": "https://example.com",
"prompt": "text",
"duration": 5,
"negative_prompt": "text",
"cfg_scale": 1
}
No content
Retrieve the generated video from the server
After sending a request for video generation, this task is added to the queue. Based on the service's load, the generation can be completed in seconds or take a bit more.
GET /v2/generate/video/kling/generation HTTP/1.1
Host: api.aimlapi.com
Authorization: Bearer <YOUR_AIMLAPI_KEY>
Accept: */*
No content
Full Example: Generating and Retrieving the Video From the Server
We have a classic reproduction of the famous da Vinci painting. Let's ask the model to generate a video where the Mona Lisa puts on glasses.
Generation may take around 5 minutes for a 5-second video.
import requests
import time
# replace <YOUR_AIMLAPI_KEY> with your actual AI/ML API key
api_key = "<YOUR_AIMLAPI_KEY>"
base_url = "https://api.aimlapi.com/v2"
# Creating and sending a video generation task to the server
def generate_video():
url = f"{base_url}/generate/video/kling/generation"
headers = {
"Authorization": f"Bearer {api_key}",
}
data = {
"model": "kling-video/v1/standard/image-to-video",
"prompt": "Mona Lisa puts on glasses with her hands.",
"image_url": "https://s2-111386.kwimgs.com/bs2/mmu-aiplatform-temp/kling/20240620/1.jpeg",
"duration": "5",
}
response = requests.post(url, json=data, headers=headers)
if response.status_code >= 400:
print(f"Error: {response.status_code} - {response.text}")
else:
response_data = response.json()
# print(response_data)
return response_data
# Requesting the result of the task from the server using the generation_id
def get_video(gen_id):
url = f"{base_url}/generate/video/kling/generation"
params = {
"generation_id": gen_id,
}
# Insert your AIML API Key instead of <YOUR_AIMLAPI_KEY>:
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
response = requests.get(url, params=params, headers=headers)
# print("Generation:", response.json())
return response.json()
def main():
# Running video generation and getting a task id
gen_response = generate_video()
gen_id = gen_response.get("id")
print("Gen_ID: ", gen_id)
# Trying to retrieve the video from the server every 10 sec
if gen_id:
start_time = time.time()
timeout = 600
while time.time() - start_time < timeout:
response_data = get_video(gen_id)
if response_data is None:
print("Error: No response from API")
break
status = response_data.get("status")
print("Status:", status)
if status == "waiting" or status == "active" or status == "queued" or status == "generating":
print("Still waiting... Checking again in 10 seconds.")
time.sleep(10)
else:
print("Processing complete:/n", response_data)
return response_data
print("Timeout reached. Stopping.")
return None
if __name__ == "__main__":
main()
Last updated
Was this helpful?