Veo2 (Image-to-Video)
Overview
An advanced multimodal (image + text) AI model that transforms static images into high-quality, dynamic video content. It builds upon the success of Google's Veo2 text-to-video model, offering unprecedented control and realism in video generation from still images.
Key Features:
Faithful content preservation from source images.
Intuitive motion generation with physics-aware movement.
Setup your API Key
If you don’t have an API key for the AI/ML API yet, feel free to use our Quickstart guide.
How to Make a Call
API Schemas
Create a video generation task and send it to the server
You can generate a video using this API.
The text prompt describing how the image should be animated
URL of the input image to animate. Should be 720p or higher resolution
The aspect ratio of the generated video
The duration of the generated video in seconds. Possible values: 5, 6, 7, 8
POST /v2/generate/video/google/generation HTTP/1.1
Host: api.aimlapi.com
Authorization: Bearer <YOUR_AIMLAPI_KEY>
Content-Type: application/json
Accept: */*
Content-Length: 116
{
"model": "veo2/image-to-video",
"prompt": "text",
"image_url": "https://example.com",
"aspect_ratio": "auto",
"duration": 5
}
No content
Fetch the video
After sending a request for video generation, this task is added to the queue. This endpoint lets you check the status of a video generation task using its id
, obtained from the endpoint described above.
If the video generation task status is complete
, the response will include the final result — with the generated video URL and additional metadata.
GET /v2/generate/video/google/generation HTTP/1.1
Host: api.aimlapi.com
Authorization: Bearer <YOUR_AIMLAPI_KEY>
Accept: */*
No content
Full Example: Generating and Retrieving the Video From the Server
We have a classic reproduction of the famous da Vinci painting. Let's ask the model to generate a video where the Mona Lisa puts on glasses.
Generation may take around 40-50 seconds for a 5-second video.
import requests
import time
# replace <YOUR_AIMLAPI_KEY> with your actual AI/ML API key
api_key = "<YOUR_AIMLAPI_KEY>"
base_url = "https://api.aimlapi.com/v2"
# Creating and sending a video generation task to the server
def generate_video():
url = f"{base_url}/generate/video/google/generation"
headers = {
"Authorization": f"Bearer {api_key}",
}
data = {
"model": "veo2/image-to-video",
"prompt": "Mona Lisa puts on glasses with her hands.",
"image_url": "https://s2-111386.kwimgs.com/bs2/mmu-aiplatform-temp/kling/20240620/1.jpeg",
"duration": "5",
}
response = requests.post(url, json=data, headers=headers)
if response.status_code >= 400:
print(f"Error: {response.status_code} - {response.text}")
else:
response_data = response.json()
# print(response_data)
return response_data
# Requesting the result of the task from the server using the generation_id
def get_video(gen_id):
url = f"{base_url}/generate/video/google/generation"
params = {
"generation_id": gen_id,
}
# Insert your AIML API Key instead of <YOUR_AIMLAPI_KEY>:
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
response = requests.get(url, params=params, headers=headers)
# print("Generation:", response.json())
return response.json()
def main():
# Running video generation and getting a task id
gen_response = generate_video()
gen_id = gen_response.get("id")
print("Gen_ID: ", gen_id)
# Trying to retrieve the video from the server every 10 sec
if gen_id:
start_time = time.time()
timeout = 600
while time.time() - start_time < timeout:
response_data = get_video(gen_id)
if response_data is None:
print("Error: No response from API")
break
status = response_data.get("status")
print("Status:", status)
if status == "waiting" or status == "active" or status == "queued" or status == "generating":
print("Still waiting... Checking again in 10 seconds.")
time.sleep(10)
else:
print("Processing complete:/n", response_data)
return response_data
print("Timeout reached. Stopping.")
return None
if __name__ == "__main__":
main()
Last updated
Was this helpful?