AI/ML API Documentation
API KeyModelsPlaygroundGitHubGet Support
  • 📞Contact Sales
  • 🗯️Send Feedback
  • Quickstart
    • 🧭Documentation Map
    • Setting Up
    • Supported SDKs
  • API REFERENCES
    • 📒All Model IDs
    • Text Models (LLM)
      • AI21 Labs
        • jamba-1-5-mini
      • Alibaba Cloud
        • qwen-max
        • qwen-plus
        • qwen-turbo
        • Qwen2-72B-Instruct
        • Qwen2.5-7B-Instruct-Turbo
        • Qwen2.5-72B-Instruct-Turbo
        • Qwen2.5-Coder-32B-Instruct
        • Qwen-QwQ-32B
        • Qwen3-235B-A22B
      • Anthracite
        • magnum-v4
      • Anthropic
        • Claude 3 Haiku
        • Claude 3.5 Haiku
        • Claude 3 Opus
        • Claude 3 Sonnet
        • Claude 3.5 Sonnet
        • Claude 3.7 Sonnet
      • Cohere
        • command-r-plus
      • DeepSeek
        • DeepSeek V3
        • DeepSeek R1
      • Google
        • gemini-1.5-flash
        • gemini-1.5-pro
        • gemini-2.0-flash-exp
        • gemini-2.0-flash-thinking-exp-01-21
        • gemini-2.0-flash
        • gemini-2.5-flash-preview
        • gemini-2.5-pro-exp
        • gemini-2.5-pro-preview
        • gemma-2
        • gemma-3
      • Gryphe
        • MythoMax-L2-13b-Lite
      • Meta
        • Llama-3-chat-hf
        • Llama-3-8B-Instruct-Lite
        • Llama-3.1-8B-Instruct-Turbo
        • Llama-3.1-70B-Instruct-Turbo
        • Llama-3.1-405B-Instruct-Turbo
        • Llama-3.2-11B-Vision-Instruct-Turbo
        • Llama-3.2-90B-Vision-Instruct-Turbo
        • Llama-Vision-Free
        • Llama-3.2-3B-Instruct-Turbo
        • Llama-3.3-70B-Instruct-Turbo
        • Llama-4-scout
        • Llama-4-maverick
      • MiniMax
        • text-01
        • abab6.5s-chat
      • Mistral AI
        • codestral-2501
        • mistral-nemo
        • mistral-tiny
        • Mistral-7B-Instruct
        • Mixtral-8x22B-Instruct
        • Mixtral-8x7B-Instruct
      • NVIDIA
        • Llama-3.1-Nemotron-70B-Instruct-HF
        • llama-3.1-nemotron-70b
      • NeverSleep
        • llama-3.1-lumimaid
      • NousResearch
        • Nous-Hermes-2-Mixtral-8x7B-DPO
      • OpenAI
        • gpt-3.5-turbo
        • gpt-4
        • gpt-4-preview
        • gpt-4-turbo
        • gpt-4o
        • gpt-4o-mini
        • gpt-4o-audio-preview
        • gpt-4o-mini-audio-preview
        • gpt-4o-search-preview
        • gpt-4o-mini-search-preview
        • o1
        • o1-mini
        • o1-preview
        • o3-mini
        • gpt-4.5-preview
        • gpt-4.1
        • gpt-4.1-mini
        • gpt-4.1-nano
        • o4-mini
      • xAI
        • grok-beta
        • grok-3-beta
        • grok-3-mini-beta
    • Image Models
      • Flux
        • flux-pro
        • flux-pro/v1.1
        • flux-pro/v1.1-ultra
        • flux-realism
        • flux/dev
        • flux/dev/image-to-image
        • flux/schnell
      • Google
        • Imagen 3.0
      • OpenAI
        • DALL·E 2
        • DALL·E 3
      • RecraftAI
        • Recraft v3
      • Stability AI
        • Stable Diffusion v3 Medium
        • Stable Diffusion v3.5 Large
    • Video Models
      • Alibaba Cloud
        • Wan 2.1 (Text-to-Video)
      • Google
        • Veo2 (Image-to-Video)
        • Veo2 (Text-to-Video)
      • Kling AI
        • v1-standard/image-to-video
        • v1-standard/text-to-video
        • v1-pro/image-to-video
        • v1-pro/text-to-video
        • v1.6-standard/text-to-video
        • v1.6-standard/image-to-video
        • v1.6-pro/image-to-video
        • v1.6-pro/text-to-video
        • v1.6-standard/effects
        • v1.6-pro/effects
        • v2-master/image-to-video
        • v2-master/text-to-video
      • Luma AI
        • Text-to-Video v2
        • Text-to-Video v1 (legacy)
      • MiniMax
        • video-01
        • video-01-live2d
      • Runway
        • gen3a_turbo
        • gen4_turbo
    • Music Models
      • MiniMax
        • minimax-music [legacy]
        • music-01
      • Stability AI
        • stable-audio
    • Voice/Speech Models
      • Speech-to-Text
        • stt [legacy]
        • Deepgram
          • nova-2
        • OpenAI
          • whisper-base
          • whisper-large
          • whisper-medium
          • whisper-small
          • whisper-tiny
      • Text-to-Speech
        • Deepgram
          • aura
    • Content Moderation Models
      • Meta
        • Llama-Guard-3-11B-Vision-Turbo
        • LlamaGuard-2-8b
        • Meta-Llama-Guard-3-8B
    • 3D-Generating Models
      • Stability AI
        • triposr
    • Vision Models
      • Image Analysis
      • OCR: Optical Character Recognition
        • Google
          • Google OCR
        • Mistral AI
          • mistral-ocr-latest
      • OFR: Optical Feature Recognition
    • Embedding Models
      • Anthropic
        • voyage-2
        • voyage-code-2
        • voyage-finance-2
        • voyage-large-2
        • voyage-large-2-instruct
        • voyage-law-2
        • voyage-multilingual-2
      • BAAI
        • bge-base-en
        • bge-large-en
      • Google
        • textembedding-gecko
        • text-multilingual-embedding-002
      • OpenAI
        • text-embedding-3-large
        • text-embedding-3-small
        • text-embedding-ada-002
      • Together AI
        • m2-bert-80M-retrieval
  • Solutions
    • Bagoodex
      • AI Search Engine
        • Find Links
        • Find Images
        • Find Videos
        • Find the Weather
        • Find a Local Map
        • Get a Knowledge Structure
    • OpenAI
      • Assistants
        • Assistant API
        • Thread API
        • Message API
        • Run and Run Step API
        • Events
  • Use Cases
    • Create Images: Illustrate an Article
    • Animate Images: A Children’s Encyclopedia
    • Create an Assistant to Discuss a Specific Document
    • Create a 3D Model from an Image
    • Create a Looped GIF for a Web Banner
    • Read Text Aloud and Describe Images: Support People with Visual Impairments
    • Summarize Websites with AI-Powered Chrome Extension
  • Capabilities
    • Completion and Chat Completion
    • Streaming Mode
    • Code Generation
    • Thinking / Reasoning
    • Function Calling
    • Vision in Text Models (Image-To-Text)
    • Web Search
    • Features of Anthropic Models
    • Model comparison
  • FAQ
    • Can I use API in Python?
    • Can I use API in NodeJS?
    • What are the Pro Models?
    • How to use the Free Tier?
    • Are my requests cropped?
    • Can I call API in the asynchronous mode?
    • OpenAI SDK doesn't work?
  • Errors and Messages
    • General Info
    • Errors with status code 4xx
    • Errors with status code 5xx
  • Glossary
    • Concepts
  • Integrations
    • 🧩Our Integration List
    • Langflow
    • LiteLLM
Powered by GitBook
On this page

Was this helpful?

  1. API REFERENCES
  2. Text Models (LLM)
  3. Mistral AI

mistral-tiny

Previousmistral-nemoNextMistral-7B-Instruct

Last updated 1 month ago

Was this helpful?

This documentation is valid for the following list of our models:

  • mistralai/mistral-tiny

Model Overview

A lightweight language model optimized for efficient text generation, summarization, and code completion tasks. It is designed to operate effectively in resource-constrained environments while maintaining high performance.

How to Make a Call

1

Setup You Can’t Skip

: Visit the AI/ML API website and create an account (if you don’t have one yet). : After logging in, navigate to your account dashboard and generate your API key. Ensure that key is enabled on UI.

2

Copy the code example

At the bottom of this page, you'll find that shows how to structure the request. Choose the code snippet in your preferred programming language and copy it into your development environment.

3

Modify the code example

Replace <YOUR_AIMLAPI_KEY> with your actual AI/ML API key from your account. Insert your question or request into the content field—this is what the model will respond to.

4

(Optional) Adjust other optional parameters if needed

Only model and messages are required parameters for this model (and we’ve already filled them in for you in the example), but you can include optional parameters if needed to adjust the model’s behavior. Below, you can find the corresponding , which lists all available parameters along with notes on how to use them.

5

Run your modified code

Run your modified code in your development environment. Response time depends on various factors, but for simple prompts it rarely exceeds a few seconds.

If you need a more detailed walkthrough for setting up your development environment and making a request step by step — feel free to use our .

API Schema

Code Example (Python)

import requests

response = requests.post(
    "https://api.aimlapi.com/v1/chat/completions",
    headers={
        "Content-Type":"application/json", 

        # Insert your AIML API Key instead of <YOUR_AIMLAPI_KEY>:
        "Authorization":"Bearer <YOUR_AIMLAPI_KEY>",
        "Content-Type":"application/json"
    },
    json={
        "model":"mistralai/mistral-tiny",
        "messages":[
            {
                "role":"user",

                # Insert your question for the model here, instead of Hello:
                "content":"Hello"
            }
        ]
    }
)

data = response.json()
print(data)
Response
{'id': 'gen-1744193337-VPTpAxEsMzJ79PKh5w4X', 'object': 'chat.completion', 'choices': [{'index': 0, 'finish_reason': 'stop', 'logprobs': None, 'message': {'role': 'assistant', 'content': "Hello! How can I assist you today? Feel free to ask me anything, I'm here to help. If you are looking for general information or help with a specific question, please let me know. I am happy to help with a wide range of topics, including but not limited to, technology, science, health, education, and more. Enjoy your day!", 'refusal': None}}], 'created': 1744193337, 'model': 'mistralai/mistral-tiny', 'usage': {'prompt_tokens': 2, 'completion_tokens': 42, 'total_tokens': 44}}
▪️
▪️
▪️
▪️
Create an Account
Generate an API Key
Quickstart guide
a code example
API schema
  • Model Overview
  • How to Make a Call
  • API Schema
  • POSTGenerate a conversational response using a language model.
  • Code Example (Python)

Generate a conversational response using a language model.

post

Creates a chat completion using a language model, allowing interactive conversation by predicting the next response based on the given chat history. This is useful for AI-driven dialogue systems and virtual assistants.

Authorizations
Body
modelundefined · enumRequiredPossible values:
top_kintegerOptional

Only sample from the top K options for each subsequent token. Used to remove "long tail" low probability responses. Recommended for advanced use cases only. You usually only need to use temperature.

repetition_penaltynumber · max: 2Optional

A number that controls the diversity of generated text by reducing the likelihood of repeated sequences. Higher values decrease repetition.

min_pnumber · max: 1Optional

A number between 0 and 1 that can be used as an alternative to top_p and top_k.

top_anumber · max: 1Optional

Alternate top sampling parameter.

frequency_penaltynumber | nullableOptional

Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model's likelihood to repeat the same line verbatim.

logprobsboolean | nullableOptional

Whether to return log probabilities of the output tokens or not. If True, returns the log probabilities of each output token returned in the content of message.

top_logprobsnumber | nullableOptional

An integer between 0 and 20 specifying the number of most likely tokens to return at each token position, each with an associated log probability. logprobs must be set to True if this parameter is used.

max_tokensnumber · min: 1Optional

The maximum number of tokens that can be generated in the chat completion. This value can be used to control costs for text generated via API.

Default: 512
max_completion_tokensinteger · min: 1Optional

An upper bound for the number of tokens that can be generated for a completion, including visible output tokens and reasoning tokens.

Default: 512
ninteger | nullableOptional

How many chat completion choices to generate for each input message. Note that you will be charged based on the number of generated tokens across all of the choices. Keep n as 1 to minimize costs.

presence_penaltynumber | nullableOptional

Positive values penalize new tokens based on whether they appear in the text so far, increasing the model's likelihood to talk about new topics.

seedinteger · min: 1Optional

This feature is in Beta. If specified, our system will make a best effort to sample deterministically, such that repeated requests with the same seed and parameters should return the same result.

streambooleanOptional

If set to True, the model response data will be streamed to the client as it is generated using server-sent events.

Default: false
top_pnumber · min: 0.1 · max: 1Optional

An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered. We generally recommend altering this or temperature but not both.

temperaturenumber · max: 2Optional

What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. We generally recommend altering this or top_p but not both.

stopany ofOptional

Up to 4 sequences where the API will stop generating further tokens. The returned text will not contain the stop sequence.

stringOptional
or
string[]Optional
or
any | nullableOptional
tool_choiceany ofOptional

Controls which (if any) tool is called by the model. none means the model will not call any tool and instead generates a message. auto means the model can pick between generating a message or calling one or more tools. required means the model must call one or more tools. Specifying a particular tool via {"type": "function", "function": {"name": "my_function"}} forces the model to call that tool. none is the default when no tools are present. auto is the default if tools are present.

string · enumOptional

none means the model will not call any tool and instead generates a message. auto means the model can pick between generating a message or calling one or more tools. required means the model must call one or more tools.

Possible values:
or
parallel_tool_callsbooleanOptional

Whether to enable parallel function calling during tool use.

reasoning_effortstring · enumOptional

Constrains effort on reasoning for reasoning models. Currently supported values are low, medium, and high. Reducing reasoning effort can result in faster responses and fewer tokens used on reasoning in a response.

Possible values:
response_formatone ofOptional

An object specifying the format that the model must output.

or
or
Responses
201Success
post
POST /v1/chat/completions HTTP/1.1
Host: api.aimlapi.com
Authorization: Bearer <YOUR_AIMLAPI_KEY>
Content-Type: application/json
Accept: */*
Content-Length: 997

{
  "model": "mistralai/mistral-tiny",
  "top_k": 1,
  "repetition_penalty": 1,
  "min_p": 1,
  "top_a": 1,
  "reasoning": {
    "effort": "low",
    "max_tokens": 1,
    "exclude": true
  },
  "frequency_penalty": 1,
  "logit_bias": {
    "ANY_ADDITIONAL_PROPERTY": 1
  },
  "logprobs": true,
  "top_logprobs": 1,
  "max_tokens": 1,
  "max_completion_tokens": 1,
  "n": 1,
  "prediction": {
    "type": "content",
    "content": "text"
  },
  "presence_penalty": 1,
  "seed": 1,
  "messages": [
    {
      "role": "system",
      "content": "text",
      "name": "text"
    }
  ],
  "stream": true,
  "stream_options": {
    "include_usage": true
  },
  "top_p": 1,
  "temperature": 1,
  "stop": "text",
  "tools": [
    {
      "type": "function",
      "function": {
        "description": "text",
        "name": "text",
        "parameters": null,
        "strict": true,
        "required": [
          "text"
        ]
      }
    }
  ],
  "tool_choice": "none",
  "parallel_tool_calls": true,
  "reasoning_effort": "low",
  "response_format": {
    "type": "text"
  },
  "audio": {
    "format": "wav",
    "voice": "alloy"
  },
  "modalities": [
    "text"
  ],
  "web_search_options": {
    "search_context_size": "low",
    "user_location": {
      "approximate": {
        "city": "text",
        "country": "text",
        "region": "text",
        "timezone": "text"
      },
      "type": "approximate"
    }
  }
}
201Success

No content