AI/ML API Documentation
API KeyModelsPlaygroundGitHubGet Support
  • 📞Contact Sales
  • 🗯️Send Feedback
  • Quickstart
    • 🧭Documentation Map
    • Setting Up
    • Supported SDKs
  • API REFERENCES
    • 📒All Model IDs
    • Text Models (LLM)
      • AI21 Labs
        • jamba-1-5-mini
      • Alibaba Cloud
        • qwen-max
        • qwen-plus
        • qwen-turbo
        • Qwen2-72B-Instruct
        • Qwen2.5-7B-Instruct-Turbo
        • Qwen2.5-72B-Instruct-Turbo
        • Qwen2.5-Coder-32B-Instruct
        • Qwen-QwQ-32B
        • Qwen3-235B-A22B
      • Anthracite
        • magnum-v4
      • Anthropic
        • Claude 3 Haiku
        • Claude 3.5 Haiku
        • Claude 3 Opus
        • Claude 3 Sonnet
        • Claude 3.5 Sonnet
        • Claude 3.7 Sonnet
      • Cohere
        • command-r-plus
      • DeepSeek
        • DeepSeek V3
        • DeepSeek R1
      • Google
        • gemini-1.5-flash
        • gemini-1.5-pro
        • gemini-2.0-flash-exp
        • gemini-2.0-flash-thinking-exp-01-21
        • gemini-2.0-flash
        • gemini-2.5-flash-preview
        • gemini-2.5-pro-exp
        • gemini-2.5-pro-preview
        • gemma-2
        • gemma-3
      • Gryphe
        • MythoMax-L2-13b-Lite
      • Meta
        • Llama-3-chat-hf
        • Llama-3-8B-Instruct-Lite
        • Llama-3.1-8B-Instruct-Turbo
        • Llama-3.1-70B-Instruct-Turbo
        • Llama-3.1-405B-Instruct-Turbo
        • Llama-3.2-11B-Vision-Instruct-Turbo
        • Llama-3.2-90B-Vision-Instruct-Turbo
        • Llama-Vision-Free
        • Llama-3.2-3B-Instruct-Turbo
        • Llama-3.3-70B-Instruct-Turbo
        • Llama-4-scout
        • Llama-4-maverick
      • MiniMax
        • text-01
        • abab6.5s-chat
      • Mistral AI
        • codestral-2501
        • mistral-nemo
        • mistral-tiny
        • Mistral-7B-Instruct
        • Mixtral-8x22B-Instruct
        • Mixtral-8x7B-Instruct
      • NVIDIA
        • Llama-3.1-Nemotron-70B-Instruct-HF
        • llama-3.1-nemotron-70b
      • NeverSleep
        • llama-3.1-lumimaid
      • NousResearch
        • Nous-Hermes-2-Mixtral-8x7B-DPO
      • OpenAI
        • gpt-3.5-turbo
        • gpt-4
        • gpt-4-preview
        • gpt-4-turbo
        • gpt-4o
        • gpt-4o-mini
        • gpt-4o-audio-preview
        • gpt-4o-mini-audio-preview
        • gpt-4o-search-preview
        • gpt-4o-mini-search-preview
        • o1
        • o1-mini
        • o1-preview
        • o3-mini
        • gpt-4.5-preview
        • gpt-4.1
        • gpt-4.1-mini
        • gpt-4.1-nano
        • o4-mini
      • xAI
        • grok-beta
        • grok-3-beta
        • grok-3-mini-beta
    • Image Models
      • Flux
        • flux-pro
        • flux-pro/v1.1
        • flux-pro/v1.1-ultra
        • flux-realism
        • flux/dev
        • flux/dev/image-to-image
        • flux/schnell
      • Google
        • Imagen 3.0
      • OpenAI
        • DALL·E 2
        • DALL·E 3
      • RecraftAI
        • Recraft v3
      • Stability AI
        • Stable Diffusion v3 Medium
        • Stable Diffusion v3.5 Large
    • Video Models
      • Alibaba Cloud
        • Wan 2.1 (Text-to-Video)
      • Google
        • Veo2 (Image-to-Video)
        • Veo2 (Text-to-Video)
      • Kling AI
        • v1-standard/image-to-video
        • v1-standard/text-to-video
        • v1-pro/image-to-video
        • v1-pro/text-to-video
        • v1.6-standard/text-to-video
        • v1.6-standard/image-to-video
        • v1.6-pro/image-to-video
        • v1.6-pro/text-to-video
        • v1.6-standard/effects
        • v1.6-pro/effects
        • v2-master/image-to-video
        • v2-master/text-to-video
      • Luma AI
        • Text-to-Video v2
        • Text-to-Video v1 (legacy)
      • MiniMax
        • video-01
        • video-01-live2d
      • Runway
        • gen3a_turbo
        • gen4_turbo
    • Music Models
      • MiniMax
        • minimax-music [legacy]
        • music-01
      • Stability AI
        • stable-audio
    • Voice/Speech Models
      • Speech-to-Text
        • stt [legacy]
        • Deepgram
          • nova-2
        • OpenAI
          • whisper-base
          • whisper-large
          • whisper-medium
          • whisper-small
          • whisper-tiny
      • Text-to-Speech
        • Deepgram
          • aura
    • Content Moderation Models
      • Meta
        • Llama-Guard-3-11B-Vision-Turbo
        • LlamaGuard-2-8b
        • Meta-Llama-Guard-3-8B
    • 3D-Generating Models
      • Stability AI
        • triposr
    • Vision Models
      • Image Analysis
      • OCR: Optical Character Recognition
        • Google
          • Google OCR
        • Mistral AI
          • mistral-ocr-latest
      • OFR: Optical Feature Recognition
    • Embedding Models
      • Anthropic
        • voyage-2
        • voyage-code-2
        • voyage-finance-2
        • voyage-large-2
        • voyage-large-2-instruct
        • voyage-law-2
        • voyage-multilingual-2
      • BAAI
        • bge-base-en
        • bge-large-en
      • Google
        • textembedding-gecko
        • text-multilingual-embedding-002
      • OpenAI
        • text-embedding-3-large
        • text-embedding-3-small
        • text-embedding-ada-002
      • Together AI
        • m2-bert-80M-retrieval
  • Solutions
    • Bagoodex
      • AI Search Engine
        • Find Links
        • Find Images
        • Find Videos
        • Find the Weather
        • Find a Local Map
        • Get a Knowledge Structure
    • OpenAI
      • Assistants
        • Assistant API
        • Thread API
        • Message API
        • Run and Run Step API
        • Events
  • Use Cases
    • Create Images: Illustrate an Article
    • Animate Images: A Children’s Encyclopedia
    • Create an Assistant to Discuss a Specific Document
    • Create a 3D Model from an Image
    • Create a Looped GIF for a Web Banner
    • Read Text Aloud and Describe Images: Support People with Visual Impairments
    • Summarize Websites with AI-Powered Chrome Extension
  • Capabilities
    • Completion and Chat Completion
    • Streaming Mode
    • Code Generation
    • Thinking / Reasoning
    • Function Calling
    • Vision in Text Models (Image-To-Text)
    • Web Search
    • Features of Anthropic Models
    • Model comparison
  • FAQ
    • Can I use API in Python?
    • Can I use API in NodeJS?
    • What are the Pro Models?
    • How to use the Free Tier?
    • Are my requests cropped?
    • Can I call API in the asynchronous mode?
    • OpenAI SDK doesn't work?
  • Errors and Messages
    • General Info
    • Errors with status code 4xx
    • Errors with status code 5xx
  • Glossary
    • Concepts
  • Integrations
    • 🧩Our Integration List
    • Langflow
    • LiteLLM
Powered by GitBook
On this page
  • Overview
  • Example
  • All Available Video Models

Was this helpful?

  1. API REFERENCES

Video Models

PreviousStable Diffusion v3.5 LargeNextAlibaba Cloud

Last updated 14 days ago

Was this helpful?

Overview

With our API you can generate videos from your prompt and imagination.

We support multiple video models. You can find the along with API reference links at the end of the page.

Example

Full example explanation

As an example, we will generate a video using the popular video-01 model from the Chinese company MiniMax. This model, as you can verify by checking its , accepts an image as input (serving as the first frame of the future video) along with a text prompt, where we can describe what should happen to this image throughout the video.

We used a publicly available from Wikimedia and described in the prompt that the cheetah turns toward the camera.

A notable feature of video-01 model is that video generation and retrieving the final video file from the server are done through separate API calls. (AIML API tokens are only consumed during the first step—i.e., the actual video generation.)

You can insert the contents of each of the two code blocks into a separate Python file in your preferred development environment (or, for example, place each part in a separate cell in Jupyter Notebook). Replace <YOUR_API_KEY> in both fragments with the AIML API Key obtained from your .

Next, run the first code block. If everything is set up correctly, you will see the following line in the program output (the specific numbers, of course, will vary): Generation: {'generation_id': '234954179076239'}

This means that our generation has been queued on the server.

Now, copy this numerical value (without quotation marks) and insert it into the second code block, replacing <GENERATION_ID>. Now, we can execute the second code block to request our final video file from the server.

Processing the request on the server may take some time (usually less than a minute). If the requested file is not yet ready, the output will display the corresponding status. Try waiting a bit and rerun the second code block. (If you're comfortable with coding, you can modify the script to perform this request inside a loop.)

In our case, after three reruns of the second code block (waiting a total of about 20 seconds), we saw the following output:

Generation: {'id': '234954179076239', 'status': 'completed', 'video': {'url': 'https://cdn.aimlapi.com/whale/inference_output%2Fvideo%2F2025-02-07%2F0c4d54db-da1b-404a-a495-600426796415%2Foutput.mp4?Expires=1738947643&OSSAccessKeyId=LTAI5tAmwsjSaaZVA6cEFAUu&Signature=mo3sfeNpVz5mNQW%2BSt2g8d2%2Fvf4%3D'}}

As you can see, the 'status' is now 'completed', and further in the output line, we have a URL where the generated video file can be downloaded.

Here is the resulting turning cheetah ():

The first code block (generation):


import requests


def main():
    url = "https://api.aimlapi.com/v2/generate/video/minimax/generation"
    payload = {
        "model": "video-01",
        "prompt": "Cheetah turns toward the camera.",
        "first_frame_image": "https://upload.wikimedia.org/wikipedia/commons/thumb/a/a9/Cheetah4.jpg/1200px-Cheetah4.jpg",
    }
    # Insert your AIML API Key instead of <YOUR_AIMLAPI_KEY>:
    headers = {"Authorization": "Bearer <YOUR_AIMLAPI_KEY>", "Content-Type": "application/json"}

    response = requests.post(url, json=payload, headers=headers)
    print("Generation:", response.json())


if __name__ == "__main__":
    main()

The second code block (retrieving the generated video file from the server):

import requests


def main():
    url = "https://api.aimlapi.com/v2/generate/video/minimax/generation"
    params = {
        # Insert the generation_id (that was returned by the generation part above) in the quotation marks instead of <GENERATION_ID>:
        "generation_id": "<GENERATION_ID>",
    }
    
    # Insert your AIML API Key instead of <YOUR_AIMLAPI_KEY>:
    headers = {"Authorization": "Bearer <YOUR_AIMLAPI_KEY>", "Content-Type": "application/json"}

    response = requests.get(url, params=params, headers=headers)
    print("Generation:", response.json())


if __name__ == "__main__":
    main()

All Available Video Models

Model ID
Developer
Context
Model Card

Kling AI

Kling AI

Kling AI

Kling AI

Kling AI

Kling AI

Kling AI

Kling AI

Kling AI

Kling AI

Kling AI

Kling AI

Minimax AI

Minimax AI

-

Runway

Runway

Alibaba Cloud

Google

Google

kling-video/v1/standard/image-to-video
Kling AI (image-to-video)
kling-video/v1/standard/text-to-video
Kling AI (text-to-video)
kling-video/v1/pro/image-to-video
Kling AI (image-to-video)
kling-video/v1/pro/text-to-video
Kling AI (text-to-video)
kling-video/v1.6/standard/text-to-video
Kling 1.6 Standard
kling-video/v1.6/standard/image-to-video
Kling 1.6 Standard
kling-video/v1.6/pro/image-to-video
Kling 1.6 Pro
kling-video/v1.6/pro/text-to-video
Kling 1.6 Pro
klingai/kling-video-v1.6-pro-effects
Kling 1.6 Pro Effects
klingai/kling-video-v1.6-standard-effects
Kling 1.6 Standard Effects
klingai/v2-master-image-to-video
Kling 2.0 Master
klingai/v2-master-text-to-video
Kling 2.0 Master
video-01
MiniMax Video-01
video-01-live2d
gen3a_turbo
Runway Gen-3 turbo
runway/gen4_turbo
Runway Gen-4 Turbo
wan/v2.1/1.3b/text-to-video
Wan 2.1
veo2
Veo2 Text-to-Video
veo2/image-to-video
Veo2 Image-to-Video
API Reference
image
account
original 960x720px
complete list